Math 115
Winter 2017
Lecture 8
find equation of a line that contains $(2,-4)$ and $(4,1)$.
(1) $m=\frac{y_{1}-y_{2}}{x_{1}-x_{2}}=\frac{-4-1}{2-4}=\frac{-5}{-2}=\frac{5}{2}$
(2)

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-1=\frac{5}{2}(x-4) \\
& y-1=\frac{5}{2} x-\frac{5}{2} \cdot 4^{2} \\
& y=\frac{5}{2} x-10+1
\end{aligned} \quad \Rightarrow \begin{aligned}
& y=\frac{5}{2} x-9 \\
& m=\frac{5}{2} \\
& y-\operatorname{Int}(0,-
\end{aligned}
$$

find eau of a line that contains $(-3,2)$ and is parallel to $4 x-3 y=9$.
same slope

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

$$
y-2=\frac{4}{3}(x+3)
$$

$$
\begin{array}{r}
-3 y=-4 x+9 \Rightarrow y=\frac{4}{3} x-3 \\
m=\frac{4}{3} \\
\left.x_{1}\right) \\
\qquad y=\frac{4}{3} x+6
\end{array}
$$

$$
y-2=\frac{4}{3} x+4
$$

find eqn of a line that contains $(2,-5)$ and is perpendicular to the line $\underbrace{3 x+4 y=8}$.

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

$$
y--5=\frac{4}{3}(x-2)
$$

$$
\begin{aligned}
& m_{i} m_{2}=-1 \quad \text { check } \quad 4 y=-3 x+8 \\
& \frac{4}{3} \cdot \frac{-3}{4}=-1 \quad y=\frac{-3}{4} x+2 \\
& \text { our line has } \\
& \text { a slope of } \frac{4}{3} \text {. } \\
& y+5=\frac{4}{3}(x-2) \\
& 3 y+15=4(x-2) \\
& \rightarrow 3 y=4 x-23 \\
& y=\frac{4}{3} x-\frac{23}{3} \\
& 3 y+15=9 x-8
\end{aligned}
$$

Graph
Point $(4,-2)$

$$
\left\{\begin{array}{l}
y+2=\frac{2}{3}(x-4) \\
y=\frac{-3}{2} x+4
\end{array}\right.
$$

Since $\frac{2}{3} \cdot \frac{-3}{2}=-1$
these lines are

$$
\begin{aligned}
& \text { Graph } \\
& \left\{\begin{array}{l}
3 x-4 y=-12 \\
y-2=\frac{3}{4}(x+3) \\
\text { Point }(-3,2) \\
m=\frac{3}{4}
\end{array}\right.
\end{aligned}
$$

Since these lines have Same slope \rightarrow Parallel limes.

Graph ह̀ Shade
(1) $x \neq 2$

(3) $y \geq \frac{2}{3} x-2$

(4) $2 x-3 y>6$

Hint: write in slope-Int form.

$$
\begin{aligned}
-3 y & >-2 x+6 \\
y & <\frac{2}{3} x-2
\end{aligned}
$$

Shade the Solution.

$$
\left\{\begin{array}{l}
y \leq 3 \\
y>\frac{1}{2} x-3 \\
3 x+2 y>-6
\end{array}\right.
$$

$$
A(-4,5), \quad B(0,2)
$$

(1) Draw $\overline{A B}$
(2) Find $d(A, B)$

(3) Find midpoint

$$
\begin{aligned}
& =\sqrt{(-4)^{2}+3^{2}}=\sqrt{25}=5 \\
& M\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)=\left(\frac{-4+0}{2}, \frac{5+2}{2}\right) \\
& M(-2,3.5)
\end{aligned}
$$

$$
m=\frac{y_{1}-y_{2}}{x_{1}-x_{2}}=\frac{5-2}{-4-0}=\frac{3}{-4}=\frac{-3}{4}
$$

System of linear equations in two Variables

$$
\begin{aligned}
& \left\{\begin{array}{l}
x+y=4 \\
x-y=2
\end{array},\left\{\begin{array}{l}
x+y=17 \\
y=1-x
\end{array}\right.\right. \\
& \left\{\begin{array}{l}
2 x-3 y=6 \\
3 x+4 y=-10
\end{array},\left\{\begin{array}{l}
y=\frac{2}{3} x-8 \\
y=-2 x+4
\end{array}\right.\right.
\end{aligned}
$$

$$
\begin{cases}2 x+y=12 & \text { If there is a Solution, } \\ .05 x-.25 y=20.7 & \text { Soln has to be in }\end{cases}
$$

Soln has to be in the form of ordered-Pairs.

Soln has to make both equations a true Statement.
Is $(2,-3)$ a solution of $\left\{\begin{array}{l}x+y=-1 \\ 3 x+2 y=0\end{array}\right.$?

$$
\begin{array}{rlrl}
x+y & =-1 & 3 x+2 y & =0 \\
2+(-3) & =-1 & 3(2)+2(-3) & =0 \\
-1 & =-1 & 6+(-6) & =0 \\
& \text { Yes, }(2,-3) & 0 & =0
\end{array}
$$ is a Soln.

Is $(-3,4)$ a Solution of

$$
\left.\begin{array}{ll}
\begin{cases}2 x+3 y & =6 \\
3 x-y & =13\end{cases} & \left.(-3,4) \rightarrow \begin{array}{l}
x
\end{array}\right) \\
y=4
\end{array}\right)
$$

So $(-3,4)$ is not a Soln.
we can Solve the system by different methods.
(1) Graphing
(2) Substitution
(3) Addition

Solve by graphing

$$
\left\{\begin{array}{l}
x+y=4 \\
x-y=2
\end{array}\right.
$$

Solve by Graphing:

$$
\left\{\begin{array}{l}
2 x+3 y=6 \\
y=\frac{3}{4} x+2
\end{array}\right.
$$

Solve by Graphing:

$$
\left\{\begin{array}{l}
3 x+4 y=-12 \\
y=\frac{-3}{4} x+4
\end{array}\right.
$$

Same Slope
\Rightarrow Parallel lines

\Rightarrow No intersection Pt.
$\Rightarrow \infty$ No Solution

Solve by graphing:

$$
\left\{\begin{array}{l}
2 x-5 y=10 \\
y=\frac{2}{5} x-2
\end{array}\right.
$$

So, we may have

- exactly one

- NO Soln
- Infinitely Many Solus.

Solve by Substitution:

$$
\left\{\begin{array}{lr}
x+y=7 & x+\frac{2 x-2}{x}=7 \\
y=2 x-2 & 3 x-2=7 \\
y=2\left(\frac{6}{3}\right)-2 & 3 x=9 \rightarrow x=3 \\
y=6-2 & (3,4) \\
y=4 & \{(3,4)\}^{\text {Ans }}
\end{array}\right.
$$

Solve by Subs.

$$
\begin{array}{ll}
\begin{cases}y=5-2 x & y=5-2 x \\
3 x-y=-10 & y=5-2(-1)\end{cases} \\
\begin{array}{ll}
3 x-(5-2 x)=-10 & y=7 \\
3 x-5+2 x=-10 & \{(-1,7)\} \\
5 x=-10+5 \\
5 x=-5 \rightarrow x=-1 &
\end{array}
\end{array}
$$

Solve by Subs.

$$
\left\{\begin{array}{cc}
x-2 y=7 & x-2\left(\frac{1}{2} x-3\right)=7 \\
y=\frac{1}{2} x-3 & x-2 \cdot \frac{1}{2} x+2 \cdot 3=7 \\
x-x+6=7 \\
6=7 \\
\text { false }
\end{array}\right.
$$

Solve by Subs.

$$
\begin{aligned}
& \left\{\begin{array}{l}
4 x-3 y=9 \Rightarrow 4 x-3\left(\frac{4}{3} x-3\right)=9 \\
y=\frac{4}{3} x-3
\end{array} \quad \begin{array}{c}
4 x-3 \cdot \frac{4}{3} x+3 \cdot 3=9
\end{array}\right. \\
& \begin{array}{l}
4 x-4 x+9=9
\end{array} \\
& \begin{array}{c}
\text { Infinitely } \\
\text { Many } \\
\text { Solus. }
\end{array}
\end{aligned}
$$

Solve by Addition (Elimination):

$$
\begin{array}{lc}
\left\{\begin{array}{l}
x+y=4 \\
x-y=2
\end{array}\right. & 3+y=4 \\
2 x & y=6 \\
x=3
\end{array}
$$

$$
\begin{gathered}
\left\{\begin{array}{r}
3 x+2 y=2 \\
2 x-y=6
\end{array}\right. \text { Solve by Addition. } \\
\begin{array}{r}
3 x+2 y=2 \\
3 x-2 y=12 \\
4 x
\end{array} \quad \begin{array}{r}
3 x+2 y=2 \\
7 x=2
\end{array} \quad \begin{array}{r}
3+2 y=2 \\
2 y=-4
\end{array} \\
\{(2,-2)\}
\end{gathered}
$$

$$
\left\{\begin{array}{rr}
3\left\{\begin{array}{rr}
3 x+2 y=7 & 3 x+2 y=7 \\
5 x-3 y=-1 & 3(1)+2 y=7 \\
3+2 y=7 \\
2 x+6 y=21 & 2 y=4 \\
10 x-6 y=-2 & y=2
\end{array}\right. \\
\begin{array}{rl}
9 x=1 & =19
\end{array} & \{(1,2)\}
\end{array}\right.
$$

Solve by addition

$$
\begin{array}{cc}
3 & \left\{\begin{array}{cc}
3 x-2 y & =2 \\
-2 x & -3 y \\
2 & =-7
\end{array}\right. \\
\begin{array}{cc}
9 x-6 y=6 \\
-4 x+6 y=14
\end{array} \\
3(4)-2 y=2 & 5 x=20 \\
12-2 y=2 & x=4 \\
-2 y=-10 & \{(4,5)\}
\end{array}
$$

Sum of two numbers is 12 Twice one of them reduced by 3 times the other one is equal to -1 . use system of linear equations to find both numbers.
Let $x \in y$ be the two

$$
3\left\{\begin{array}{l}
x+y=12 \\
2 x-3 y=-1
\end{array}\right.
$$ $\begin{array}{lr}\begin{array}{c}\text { numbers, } \\ \text { The numbers } \\ \text { are } 5 \\ \text { in }\end{array} & \begin{array}{r}x=7 \\ \end{array} \\ 7 y=12 \\ y=5\end{array} \quad\left\{\begin{array}{l}3 x+3 y=36 \\ 2 x-3 y=-1 \\ \hline 5 x=35\end{array}\right.$

The Perimeter of a rectangular Pool is 54 ft .
Its length is 1 ft shorter than 3 times its width. use system of linear equations t_{0} find the dimensions of \square w the pool.

$$
\begin{aligned}
& \left\{\begin{array}{l}
2 L+2 w=54 \\
L=3 w-1
\end{array}\right. \\
& 2(3 w-1)+2 w=54 \\
& 6 w-2+2 w=54
\end{aligned}
$$

PTA purchased 15 Tkts.
PTA Paid $\$ 78 \quad A \rightarrow \#$ of adults Kid's $+k+\rightarrow \$ 4 \quad k \rightarrow \#$ of kids
Adult's t kt $\rightarrow \$ 10$
How many of each?
use System of linear

$$
\begin{aligned}
& -4\left\{\begin{array}{l}
A+K=15 \\
10 A+4 K=78
\end{array}\right. \\
& \left\{\begin{array}{l}
-4 A-4 K=-60 \\
10 A+4 K=78
\end{array}\right. \\
& \text { As }\left\{\begin{array}{r}
6 A \\
A=3
\end{array}\right.
\end{aligned}
$$ equations.

3 Adults : 12 kids

Lisa has \$1.75 in nickels ह̀ Dimes only. The number of nickels is 3 more than twice the number of dimes. use system of linear equations to find the \# of dimes.

$$
\begin{aligned}
& N \rightarrow \text { Nickels } \div 5\left\{\begin{array} { l }
{ 5 N + 1 0 D = 1 7 5 } \\
{ D \rightarrow \text { Dimes } } \\
{ N = 2 D + 3 }
\end{array} \left\{\begin{array}{l}
N+2 D=35 \\
N=2 D+3
\end{array}\right.\right. \\
& 2 D+3+2 D=35 \\
& 4 D=32 \\
& D=8
\end{aligned}
$$

Jose needs 50 lb of candy $@ \$ 1.55 / \mathrm{lb}$ He has two type of candies, one @ \$1.25/1b and another one @ \$1.75/1b. How much of each should he mix to obtain what he needs? use system of linear

$$
\left\{\begin{array} { l }
{ x + y = 5 0 } \\
{ 1 . 2 5 x + 1 . 7 5 y = 1 . 5 5 (5 0) } \\
{ 1 0 0 }
\end{array} \left\{\begin{array}{l}
x+y=50 \\
125 x+175 y=155(50)
\end{array}\right.\right.
$$

$$
\begin{gathered}
\left\{\begin{array}{c}
x+y=50 \\
5 x+7 y=310 \\
5 x+7(50-x)=310 \\
5 x+350-7 x=310 \\
-2 x=310-350 \\
-2 x=-40 \\
x=20
\end{array}\right\} y=50-x \\
x=30 \mathrm{lb} .
\end{gathered}
$$

John Sold 37 drinks in his shift. He collected $\$ 67$ in total.
Small drinks $\rightarrow \$ 1.60$, Large drinks $\rightarrow \$ 2.25$ How many of each? use S है L.

$$
\left\{\begin{array} { l }
{ S + L = 3 7 } \\
{ 1 . 6 0 S + 2 . 2 5 L = 6 7 }
\end{array} \Rightarrow \left\{\begin{array}{l}
S+L=37 \\
160 S+225 L=6700
\end{array}\right.\right.
$$

$[12$ Large ह̀ 25 Small $]$

When system of linear equations has

1) exactly one Solution \Rightarrow System is Consistent

\Rightarrow Equations are independent
2) infinitely many Solutions \Rightarrow System is Consistent
\Rightarrow Equations are dependent
3) has no Solution \Rightarrow System is in consistent $\xrightarrow[\text { Parallel }]{\rightarrow} \Rightarrow$ Equations are independat

Solve by graphing

$$
\left\{\begin{array}{l}
2 x-3 y=6 \\
y=-2 x+4 \\
y-\operatorname{In}+(0,4) \\
m=-2=\frac{-2}{1}
\end{array}\right.
$$

System is Consistent.
Ens are independent.
Graphing method is

Soln: Not a nice not a preferred choice. Soln.

Solve

$$
\left\{\begin{array}{l}
x=3 y-5 \\
x=y+9
\end{array}\right.
$$

whenever a variable is isolated, use Subs.

$$
\begin{gathered}
3 y-5=y+9 \\
3 y-y=9+5 \\
2 y=14 \\
y=7
\end{gathered}
$$

$$
\Rightarrow(16,1)
$$

System: Consistent

$$
x=16
$$

Equs: independent.

Due wednesday
(1) wp 6
(2) SG 11

Expect a Quiz @ 6:00 AM.

